Binoculars for the Highest Powers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A remark on asymptotic enumeration of highest weights in tensor powers of a representation

We consider the semigroup $S$ of highest weights appearing in tensor powers $V^{otimes k}$ of a finite dimensional representation $V$ of a connected reductive group. We describe the cone generated by $S$ as the cone over the weight polytope of $V$ intersected with the positive Weyl chamber. From this we get a description for the asymptotic of the number of highest weights appearing in $V^{otime...

متن کامل

Anonymous Graph Exploration with Binoculars

We investigate the exploration of networks by a mobile agent. It is long known that, without global information about the graph, it is not possible to make the agent halts after the exploration except if the graph is a tree. We therefore endow the agent with binoculars, a sensing device that can show the local structure of the environment at a constant distance of the agent current location. We...

متن کامل

the search for the self in becketts theatre: waiting for godot and endgame

this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...

15 صفحه اول

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

a remark on asymptotic enumeration of highest weights in tensor powers of a representation

we consider the semigroup $s$ of highest weights appearing in tensor powers $v^{otimes k}$ of a finite dimensional representation $v$ of a connected reductive group. we describe the cone generated by $s$ as the cone over the weight polytope of $v$ intersected with the positive weyl chamber. from this we get a description for the asymptotic of the number of highest weights appearing in $v^{otime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Monthly Microscopical Journal

سال: 1873

ISSN: 2047-1491

DOI: 10.1111/j.1365-2818.1873.tb02272.x